

RACS 88th Annual Scientific Congress

Monday 6 May to Friday 10 May 2019
Centara Grand & Bangkok Convention Centre | Bangkok, Thailand
Convened by RACS New Zealand

Hyperparathyroidism & Stroke systematic review + meta-analysis

Grace Yin, Year 4 MD student (Nepean Clinical School, University of Sydney) Supervised by

A/Prof. Senarath Edirimanne & Prof. Guy Eslick (Nepean Clinical School, University of Sydney)

Disclosures

The authors declare no conflicts of interest or competing financial incentive.

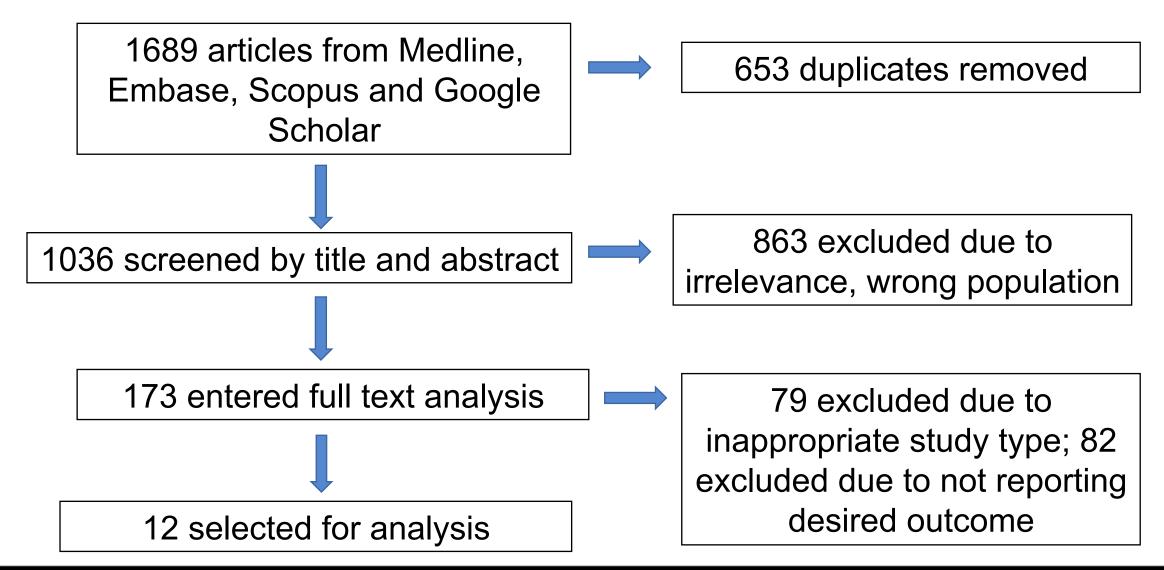
Background

- PTH: increases blood calcium level by acting on bone, kidneys and intestine.
- PTH also acts on the endothelium and the myocardium. Excess can lead to: ↑ vascular stiffness + calcification; hypertension; ↑ cardiac contractility
- Recent systematic review and meta-analysis have concluded that excess PTH is linked to increased cardiovascular mortality.

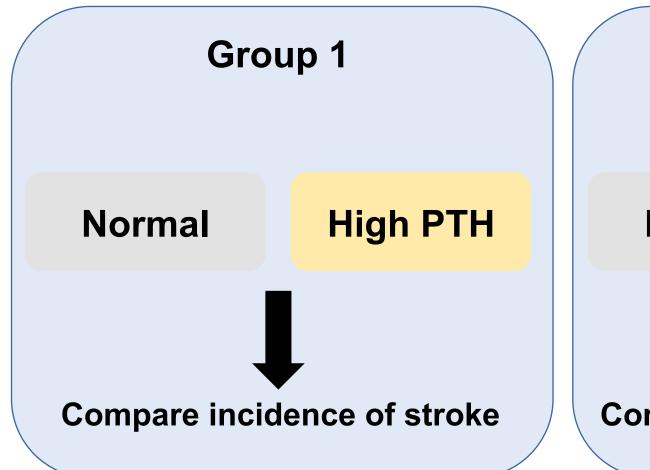
Could excess PTH be similarly linked to risk of stroke?

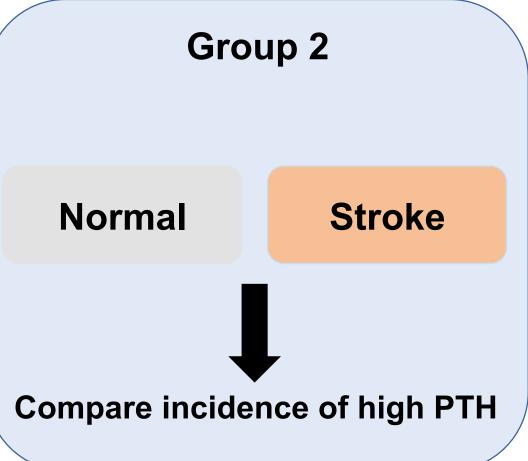
Rationale

- Why do we care?
 - Stroke is a leading cause of mortality and morbidity.
 - Hyperparathyroidism is a common and treatable condition.
- Studies available in current literature report inconsistent results regarding association between stroke and PTH.


 Systematic review and meta-analysis can help elucidate the connection through enhanced statistical power from large combined sample size.

Method





Selected studies

Selected studies

Group 1 (size 96,459)

First author	Year	Total size	Study type	NOS
Korada	2016	1,703	Cohort	8
Kontogeorg os	2015	608	Cohort	7
Tagawa	2014	65,849	Longitudin al	8
Folsom	2014	10,392	Cohort	8
Yu	2011	8,544	Cohort	8
Anderson	2011	9,369	Cohort	7

Group 2 (size 2153)

First author	Year	Total size	Study type	NOS
Celik	2017	200	Case control	8
Tan	2017	404 Case contro		7
Kuyumucu	2014	1078	Case control	9
Gupta	2014	143	Cross- sectional	9
Altay	2013	114	Case control	4
Sato	2003	214	Case control	8

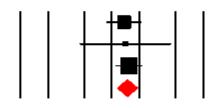
Statistical analysis Group 1

Study name	<u>s</u>	Statistics for each study		<u>y</u>	Hazard ratio and 95% CI			
	Hazard ratio	Lower limit	Upper limit	p-Value				
Folsom 2014	0.99	0.82	1.19	0.916				
Yu 2011	3.51	2.82	4.37	0.000				
Anderson 2011	1.01	0.62	1.64	0.968				
	1.53	0.60	3.91	0.372				
l ² =97.45, p<0.00	1 No pu	blication bia	as detected	d (p=0.98)	0.1 0.2	0.5 1 2 5 10		

Haemorrhagic

Korada 2016 Kontogeorgos 2015 Tagawa 2014

 $I^2=0.00$, p=0.92


Statistics for each study

Odds ratio	Lower limit	Upper limit	p-Value
1.37	0.88	2.13	0.163
1.41	0.45	4.44	0.557
1.54	1.10	2.16	0.013
1.47	1.13	1.91	0.004

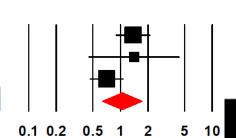
No publication bias detected (p=0.71)

Statistics for each study

Odds ratio and 95% CI

0.1 0.2 10

Ischaemic


Odds Lower Upper ratio lim it lim it Korada 2016 2.13 1.37 0.88 Kontogeorgos 2015 1.41 4.44 0.45 Tagawa 2014 0.71 0.46 1.09 1.04 0.62 1.74 0.886

I²=57.85, p=0.09

p-Value 0.163 0.557 0.117

No publication bias detected (p=0.79)

Odds ratio and 95% CI

Statistical analysis Group 2

Study name		Statistics for each study				dds ra	tio and	95% (CI
	Odds ratio	Lower limit	Upper lim it	p-Value					
Celik 2017	2.66	1.43	4.95	0.002			-	-	
Tan 2017	230.48	137.43	386.54	0.000					
Kuyumcu 2014	1.19	0.82	1.72	0.359					
Gupta 2014	1.66	0.91	3.02	0.096				.	
Altay 2013	2.13	1.08	4.18	0.029			-	F	
Sato 2003	4.14	2.50	6.86	0.000					
	4.70	0.91	24.20	0.064					
I ² =98.28, p<0.	001 N	lo publication	n bias detect	ed (p=0.72)	0.01	0.1	1	10	100

Study name		Statistics for each study			Odds ratio and 95% CI
	Odds ratio	Lower limit	Upper limit	p-Value	
Celik 2017	2.66	1.43	4.95	0.002	
Kuyumcu 2014	1.19	0.82	1.72	0.359	+
Gupta 2014	1.66	0.91	3.02	0.096	
Altay 2013	2.13	1.08	4.18	0.029	
Sato 2003	4.14	2.50	6.86	0.000	
	2.12	1.30	3.47	0.003	
I ² =76.22, p=0.00	2 N	o publication	bias detecte	ed (p=0.34)	0.1 0.2 0.5 1 2 5 10

Strengths, limitation and the future

Strengths:

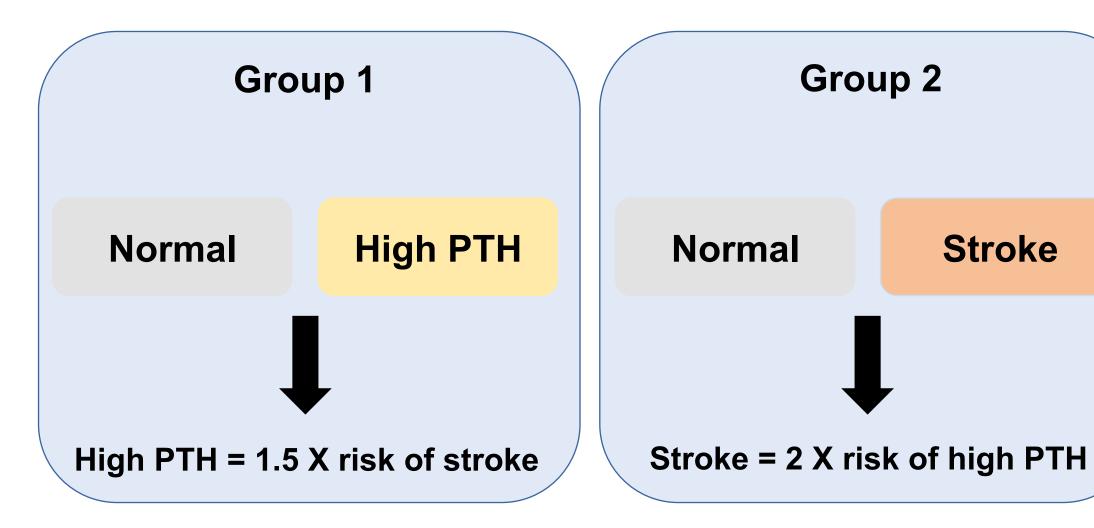
- Good quality of studies overall
- Good population size
- No publication bias detected

Limitations:

- Substantial statistical heterogeneity limits interpretation
- Causal relationship between PTH and stroke could not be established

Future studies should assess:

- Effect of PTH on ischaemic stroke compared to haemorrhagic stroke, as well as fatal compared to non-fatal events
- Stratified meta-analysis by gender, age and race may be of clinical interest



Conclusion

